

Current Transducer HTFS 200 ... 800-P

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

All data are given with $R_{\rm i}$ = 10 k Ω

Electrical data					
Primary nominal Primary of measuring $I_{PM}(A)$ $I_{PM}(A)$		ng range	Туре)	
200 400 600 800	±300 ±600 ±900 ±1200		HTFS 2 HTFS 4 HTFS 6 HTFS 8	100-P 600-P	
$U_{ m out}$ $U_{ m ref}$	Output voltage (Anal Reference voltage	og) @ I_p $I_p = 0$ 1) Output voltage U_{ref} Output impedanc U_{ref} Load impedance		$\begin{split} &U_{\rm ref} \pm (1.25 \cdot I_{\rm p}/I_{\rm pN}) \\ &U_{\rm ref} \pm 0.025 \\ &1/2 \ U_{\rm c} \ \pm 0.025 \\ &typ.\ 200 \\ &\geq 200 \end{split}$	V V Ω kΩ
$egin{array}{l} R_{L} & & & & & \\ R_{out} & & & & & \\ C_{L} & & & & & \\ U_{C} & & & & & \\ I_{C} & & & & & \\ & & & & & & \\ \end{array}$	Load resistance Output internal resistance Load capacitance Supply voltage (±5 %) Current consumption @ &			≥ 2 < 5 = 4.7 5 19 (typ) 25 (max)	kΩ Ω nF V mA mA

Accuracy - Dynamic performance data			
$\varepsilon_{\rm tot}$ Total error ²⁾ @ $I_{\rm PN}$, $T_{\rm A}$ = 25° C	≤ ±1	%	
$ε_{\rm I}$ Linearity error 0 1.5 × $I_{\rm PN}$	≤ ±0.5	%	
TCU_{OE} Temperature coefficient of U_{OE} @ I_P = 0	≤ ±0.1	mV/K	
TCU_{ref} Temperature coefficient of U_{ref}	≤ ±190	ppm/K	
${\it TCS}$ Temperature coefficient of $U_{ m out}$	≤ ±420	ppm/K	
U_{OM} Magnetic offset voltage @ I_{P} = 0 and specified R_{N}	и,		
after an overload of 3	$\times I_{PNDC} < \pm 0.5$	%	
U_{no} RMS noise voltage referred to primary (DC 20	MHz) < 40	mVpp	
$t_{\rm D10}$ Delay time to 10 % of the final output value for $I_{\rm P}$	_N step < 2	μs	
$t_{\rm D90}$ Delay time to 90 % of the final output value for $I_{\rm P}$	_N step < 3.5	μs	
di/dt di/dt accurately followed	>100	A/µs	
BW Frequency bandwidth (-3 dB) 3)	DC 240	kHz	

Notes: 1) It is possible to overdrive U_{ref} with an external reference voltage between 0.5 - 2.65 V

- ²⁾ Excluding offset and magnetic offset voltage
- ³⁾ Small signal only to avoid excessive heatings of the magnetic core.

$I_{PN} = 200 \dots 800 A$

Features

- Hall effect measuring principle
- Galvanic separation between primary and secondary circuit
- Low power consumption
- Single power supply +5 V
- · Ratiometric offset
- Insulating plastic case recognized according to UL 94-V0
- · Fixation by M3 nuts and screws
- T_Δ = -40 °C ... +105 °C.

Advantages

- · Small size and space saving
- Only one design for wide current ratings range
- · High immunity to external interference
- ullet $U_{\rm ref}$ IN/OUT.

Applications

- Forklift drives
- AC variable speed drives
- Static converters for DC motor
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

16May2024/Version 13

Current Transducer HTFS 200 ... 800-P

T _A Ambient operating temperature	–40 +105	
T _A Ambient operating temperature T _{Ast} Ambient storage temperature Mass Standard	-40 +105 -40 +105 60 EN 50178: 1997	°C °C g

	Insulation coordination		
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	2.5	kV
U_{t}	Partial discharge RMS test voltage (q_m < 10 pC)	> 1	kV
$U_{\rm Ni}$	Impulse withstand voltage 1.2/50 μs	4	kV
		Min	
d_{Cp}	Creepage distance	> 4	mm
d_{CI}	Clearance distance	> 4	mm
CT	Comparative Tracking Index (group IIIa)	> 220	

Applications examples

	EN 50178	IEC 61010-1
$d_{\mathrm{Cp}},d_{\mathrm{Cl}},U_{\mathrm{Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	300 V	300 V
Reinforced insulation	150 V	150 V

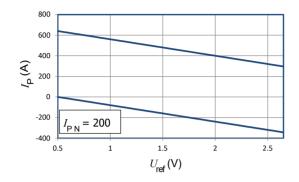
According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

Safety

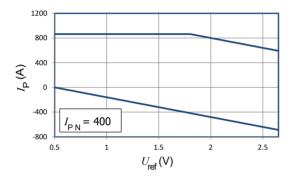
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

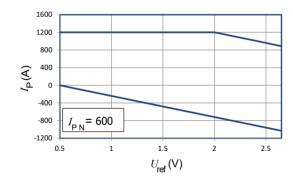

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

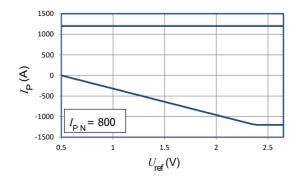
This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.



HTFS measuring range with external U_{ref}


Upper limit:
$$I_P = -160 \times U_{ref} + 720 (U_{ref} = 0.5 ... 2.65 \text{ V})$$

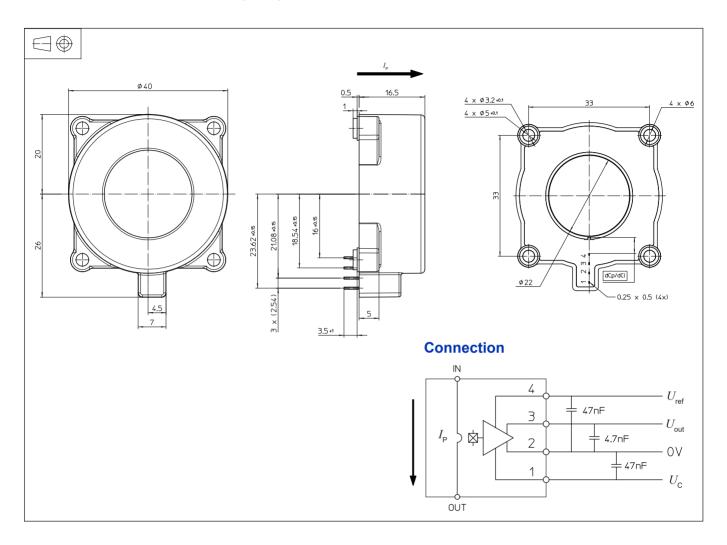
Lower limit:
$$I_{\rm P}$$
 = -160 × $U_{\rm ref}$ + 80 ($U_{\rm ref}$ = 0.5 ... 2.65 V)


Upper limit:
$$I_p$$
 = 864 (U_{ref} = 0.5 ... 1.8 V)
Upper limit: I_p = -320 × U_{ref} + 1440 (U_{ref} = 1.8 ... 2.65 V)

Lower limit:
$$I_P = -320 \times U_{ref} + 160 (U_{ref} = 0.5 ... 2.65 \text{ V})$$

$$\begin{aligned} & \text{Upper limit: } I_{\text{p}} = 1200 \; (U_{\text{ref}} = 0.5 \; \dots \; 2.0 \; \text{V}) \\ & \text{Upper limit: } I_{\text{p}} = -480 \times U_{\text{ref}} + 2160 \; (U_{\text{ref}} = 2 \; \dots \; 2.65 \; \text{V}) \end{aligned}$$

Lower limit:
$$I_P = -480 \times U_{ref} + 240 (U_{ref} = 0.5 ... 2.65 \text{ V})$$



$$\begin{array}{l} \mbox{Upper limit: } I_{\rm p} = \mbox{1200 (} U_{\rm ref} = \mbox{0.5 ... 2.625 V)} \\ \mbox{Upper limit: } I_{\rm p} = -640 \times U_{\rm ref} + \mbox{2880 (} U_{\rm ref} = \mbox{2.625 ... 2.65 V)} \\ \end{array}$$

$$\begin{array}{l} \text{Lower limit: } I_{\rm P} = -640 \times U_{\rm ref} + 320 \; (U_{\rm ref} = 0.5 \; ... \; 2.4 \; \rm V) \\ \text{Lower limit: } I_{\rm P} = -1200 \; (U_{\rm ref} = 2.4 \; ... \; 2.65 \; \rm V) \end{array}$$

Dimensions HTFS 200 ... 800-P (in mm)

Mechanical characteristics

- General tolerance
- Mounting to PCB
 Recommended PCB hole
- Fastening torque
- Connection to secondary Recommended PCB hole

 ± 0.2 mm 4 × M3 (not supplied) \varnothing 5.3 mm

0.6 N·m

4 pins 0.5 × 0.25 mm Ø 0.7 mm

Remarks

- $\bullet \ \ U_{\rm out}$ is positive when $I_{\rm P}{\rm flows}$ in the direction of arrow.
- Temperature of the primary conductor should not exceed 120 °C
- Must be mounted using PCB holes
- Installation of the transducer must be done, unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/